146 research outputs found

    The Crumpling Transition of Dynamically Triangulated Random Surfaces

    Full text link
    We present the crumpling transition in three-dimensional Euclidian space of dynamically triangulated random surfaces with edge extrinsic curvature and fixed topology of a sphere as well as simulations of a dynamically triangulated torus. We used longer runs than previous simulations and give new and more accurate estimates of critical exponents. Our data indicate a cusp singularity in the specific heat. The transition temperature, as well as the exponents are topology dependent.Comment: 11pages (PostScript figures are not included. Request author directly.), LaTeX, TPHD-93020

    Structural Properties of Two-Dimensional Polymers

    Full text link
    We present structural properties of two-dimensional polymers as far as they can be described by percolation theory. The percolation threshold, critical exponents and fractal dimensions of clusters are determined by computer simulation and compared to the results of percolation theory. We also describe the dependence of the typical cluster structures on the reaction rate.Comment: 7 pages, LaTeX with RevTeX and epsf styles and PostScript figures included (uuencoded shell archive), TVP-93051

    Deformation of polymer films by bending forces

    Full text link
    We study the deformation of nano--scale polymer films which are subject to external bending forces by means of computer simulation. The polymer is represented by a generalized bead--spring--model, intended to reproduce characteristic features of n--alkanes. The film is loaded by the action of a prismatic blade which is pressed into the polymer bulk from above and a pair of columns which support the film from below. The interaction between blade and support columns and the polymer is modelled by the repulsive part of a Lennard-Jones potential. For different system sizes as well as for different chainlengths, this nano--scale experiment is simulated by molecular dynamics methods. Our results allow us to give a first characterization of deformed states for such films. We resolve the kinetic and the dynamic stage of the deformation process in time and access the length scale between discrete particle and continuum mechanics behaviour. For the chainlengths considered here, we find that the deformation process is dominated by shear. We observe strangling effects for the film and deformation fluctuations in the steady state.Comment: 15 pages, 8 figure

    Reconstruction of the Free Energy in the Metastable Region using the Path Ensemble

    Full text link
    By quenching into the metastable region of the three-dimensional Ising model, we investigate the paths that the magnetization (energy) takes as a function of time. We accumulate the magnetization (energy) paths into time-dependent distributions from which we reconstruct the free energy as a function of the magnetic field, temperature and system size. From the reconstructed free energy, we obtain the free energy barrier that is associated with the transition from a metastable state to the stable equilibrium state. Although mean-field theory predicts a sharp transition between the metastable and the unstable region where the free energy barrier is zero, the results for the nearest-neighbour Ising model show that the free energy barrier does not go zero

    Structure of Polymer Brushes in Cylindrical Tubes: A Molecular Dynamics Simulation

    Full text link
    Molecular Dynamics simulations of a coarse-grained bead-spring model of flexible macromolecules tethered with one end to the surface of a cylindrical pore are presented. Chain length NN and grafting density σ\sigma are varied over a wide range and the crossover from ``mushroom'' to ``brush'' behavior is studied for three pore diameters. The monomer density profile and the distribution of the free chain ends are computed and compared to the corresponding model of polymer brushes at flat substrates. It is found that there exists a regime of NN and σ\sigma for large enough pore diameter where the brush height in the pore exceeds the brush height on the flat substrate, while for large enough NN and σ\sigma (and small enough pore diameters) the opposite behavior occurs, i.e. the brush is compressed by confinement. These findings are used to discuss the corresponding theories on polymer brushes at concave substrates.Comment: 11 figure

    Monte Carlo simulations reveal the straightening up of an end-grafted flexible chain with a rigid side chain

    Full text link
    We have studied the conformational properties of a flexible end-grafted chain (length NN) with a rigid side chain (length SS) by means of Monte Carlo simulations. Depending on the lengths NN and SS and the branching site, bb, we observe a considerable straightening of the flexible backbone as quantified via the gyration tensor. For b=Nb=N, i.e. when attaching the side chain to the free end of the flexible backbone, the effect was strongest
    • …
    corecore